Amazon Edoc Publishing System List of Required Features

Priority A:

Need to redirect all emails sent to randy@randygilbert.com from edoc-technology@amazon.com to report@edocwizard.com, which will be used to automatically capture information about sales

Requirements:

From an easy-to-use
 interface, a user must be able to

1. Register a new account (members/register.html)

2. Create a username and password, security question and answer (members/register.php)

3. input information describing an edoc (members/product.php)

4. save this data to a database (members/product.php)

5. edit an edoc created previously (members/product.php)

6. upload an edoc to a protected ftp location (members/product.php)

7. upload an edoc cover illustration to a protected ftp location (members/product.php)

8. download and view their edocs previously uploaded (members/details.php via link in catalog.php)

9. search, sort, and retrieve information from the database about any edoc they have entered previously (members/catalog.php)

10. publish or update the edoc on Amazon (members/catalog.php)

11. delete the edoc from Amazon (members/catalog.php)

12. specify how they wish to be paid their commissions for each edoc they sell, and to which email address their individual reports should be sent (members/account.php)

13. update contact settings (members/account.php)

14. create, edit, and delete categories for their edocs (members/account.php)

15. update password (tools/changepass.php)

16. recover a lost username or reset a lost password (tools/lostpass.php)

17. view online reports of all their sales and commissions paid (members/history.php)

18. for ISR transcripts, automatically pull information from the guest database and preload it into an edoc metadata template (members/_scripts/ISR.php)

From an easy-to-use interface, an administrator must be able to:

1. Create new accounts for users (admin/register.php)

2. Change system-wide settings, including Vendor code, ftp username, ftp password, email address where Amazon reports are received, ftp username and password for retrieving email (admin/setup.php)

3. Specify email addresses where notifications should be sent (admin/account.php)

4. Search, sort, and retrieve information from the database about all users’ edocs (admin/catalog.php)

5. Remove edocs from Amazon which might possibly be considered inappropriate or objectionable (admin/catalog.php)

6. View reports on all edocs sold, see amounts owed to users, and set commissions as paid (admin/history.php)

7. View and edit expanded details for a particular edoc (members/product.php – same as user-side)

8. Shut down or edit an individual user account (admin/users.php)

The system must be able to support the following CRON jobs:

1. send periodic reports to the administrators about all new, updated, and deleted edocs on Amazon (system/report.php)

2. separate different users’ information into custom reports, sent to them periodically as an email (system/report.php)

3. track commissions of all edocs sold (system/scanemail.php)

4. match ASIN numbers with individual edoc entries in the database, and provide users with links to their edocs’ sales pages (system/scanemail.php)

5. create and upload a metadata file each night that any user or administrator has requested to publish a new edoc or update / delete the information for an existing one (system/publish.php)

Additional requirements:

1. A “bare bones” solution for putting up ISR transcripts shall be created for immediate usability, with additional features to follow only after this is complete

2. A user manual (Camtasia tutorials will be extra, but I’m willing to do those too)

High-Level Functions needed:

parse_metadata: take a metadata file and pull out all elements needed for database

parse_html: for HTML edocs, take all images and assign appropriate names for them, place them into folder for the correct edoc

parse_email: extract information from Amazon emails and update database

output_metadata: create metadata from information passed by the database

parse_metadata inputs: the location of an xml metadata file, UserID of person whose account it should be filed under

output: true for successful parse and database update, text error message on failure

parse_html inputs: location of an uploaded HTML file, value of edoc product code

output: location of modified HTML file with appropriately-renamed images

parse_email input: complete text of email inbox

output: location of a txt file containing a record of all database elements updated

output_metadata input: array containing index values within ‘Product’ table for all edocs marked for some type of update

output: string containing a complete metadata file

Low-Level Functions needed:

Library of functions for working with MySQL db

Library of FTP connection functions

[image: image1.wmf]Accounts

Product in

catalog

ProductCode

AccountID

Amazon

Updates

UpdateID

ProductCode

UserID

ftp_upload

User

UserID

RegistrationID

AccountID

Amazon

parse_email

Products

folder

settings

file

Sales

ProductCode

SaleID

BISAC codes

SubjectID

bisg.org

Administrator

UserID

generate_reports

Disbursements

AccountID

DisbursementID

PmntGateways

RegistrationID

GatewayID

1

2

3

4

5

7

6

8

9

10

11

12

13

14

15

16

17

18

19

21

22

23

24

26

27

28

4

2

3

29

30

31

GatewayID

32

25

20

20

generate_metadata

Building Process Timetable:

1. benchmark #1 (By Friday, April 27) Complete development of 1-12. Additionally, provide functions for importing information from the ISR database to assist in creating eDoc’s of ISR transcripts. After this time, there will be some delay before continuing development occurs.

2. benchmark #2 (6 days): Complete development of 13 – 19, 32, and the login system (not shown in diagram).

3. benchmark #3 (6 days): Complete development of 24 – 31.

4. benchmark #4 (6 days): Complete development of 20 – 23.

5. Testing shall be presumed to be ongoing throughout entire development process.

Expected future expansion: Subscription-based accounts. For present, leave a “SubscriptionID” field in the Registration table, but have the parse_email function use the “$default_percent” value found in the settings file to calculate overrides owed users from the sale of their eDocs. Once subscriptions are implemented, the parse_email function will be modified to work as follows:

1. The parse_email function will lookup the Products table to find the AccountID of the relevant products sold.

2. The AccountID will be used to query the Accounts table and lookup the RegistrationID and the GatewayID.

3. The RegistrationID will be used to get the SubscriptionID. If the SubscriptionID is –1, the process will stop querying the database and simply use the “$default_percent” value found in the settings file.

4. If the SubscriptionID is not –1, then it will be used to query the Subscriptions table to find the PlanID. The Subscription record in the Subscriptions table will include an expiration date. If subscription has expired, then “$default_percent” will be used.

5. If the subscription has not expired, the PlanID will be used to query the Plans table and lookup the relevant “PercentOverride” value.

6. Whichever percent value is finally used, the parse_email function will use it to update the relevant value in the PmntGateways table based on the GatewayID found in the Accounts table.

The subscription process will also require a system for acknowledging the receipt of repeat payments, using a system very similar to the one implemented on insidesuccessradio.com. The customer has already agreed to make paypal the initial gateway. There are 4 events trigger paypal to send in an alert to the IPN (Instant Payment Notification) script on our server:

1. Paypal sends a notification of a new subscription created:

a. Notification will include an ecrypted value for “[RegistrationID] : [PlanID]” which will be decrypted and used to create a new entry in the Subscriptions table.

b. The Registrations table will be updated to match the new subscription to the appropriate registration.

c. If the plan is not a free trial, the amount billed will be checked to match the price the plan is supposed to charge. If the amount is incorrect, an alert will be sent to the administrators including the would-be subscriber’s contact information and an explanation of the error. It will be up to the administrator to determine whether or not to refund the customer and cancel the subscription.

d. The PaypalPayments table will be updated with a new record to reflect the initial payment, if the plan in question is not a free trial.

2. Paypal sends a notification of a subscription payment received successfully:

a. The notification will include the same encrypted value as for a new subscription. It will be decrypted and the RegistrationID will be used to lookup the SubscriptionID.

b. The SubscriptionID will be used to lookup the PlanID to confirm that it matches the PlanID sent by paypal.

c. The price will be checked to confirm that it matches the expected price based on the plan price level.

d. If everything matches, then the expiration date for the subscription will be incremented by the appropriate amount of time based on the plan period.

e. The PaypalPayments table will have a new row added to record the new payment received.

f. If there is an error at any point, then the administrators will be notified.

3. Paypal sends a notification that a recurring payment failed:

a. The system sends a note to the subscriber letting them know that their account is past due, and that their sales overrides will be dropped to the “free level” until their payment is processed successfully.

b. The PaypalPayments table will have a new row inserted which records that a charge was attempted, but failed.

4. Paypal sends a notification that a subscription has been cancelled:

a. The system updates the appropriate record in the Registrations table and changes the SubscriptionID to “-1”.

� Easy-to-use for a user shall be defined as being “as easy as” the original edoc publisher applet

� The details of what a Subscriptions table entry may include are outside the scope of this document, and will need to be confirmed with the customer depending on his preferences.

_1239838204.ppt

Accounts

Product in

catalog

ProductCode

AccountID

Amazon

Updates

UpdateID

ProductCode

UserID

ftp_upload

User

UserID

RegistrationID

AccountID

Amazon

parse_email

Products

folder

settings

file

Sales

ProductCode

SaleID

BISAC codes

SubjectID

bisg.org

Administrator

UserID

generate_reports

Disbursements

AccountID

DisbursementID

PmntGateways

RegistrationID

GatewayID

1

2

3

4

5

7

6

8

9

10

11

12

13

14

15

16

17

18

19

21

22

23

24

26

27

28

4

2

3

29

30

31

GatewayID

32

25

20

20

generate_metadata

1: BISAC subject codes added to the database from website bisg.org

2: User (or administrator) can access BISAC codes in database for use in adding or editing products

3: A user (or administrator) can view products in the catalog, sorted by Account. A user (or administrator) can also add or edit products in the catalog.

4: A user (or administrator) can schedule updates to the Amazon ftp. These updates may include adding new products, editing existing products, or deleting products from Amazon.

5: A user uploads edocs and images to a folder which is not directly available through a web browser

6: The generate_metadata function (usually called by the ftp_upload function) begins its routine by querying the Updates database for any jobs that have been requested. It needs to know what type of updates are scheduled, what products in the catalog they refer to, whether they have completed, and how many attempts have been made upon them.

7: The generate_metadata function queries the Products database and retries all information for new or edited products in order to create the metadata file

8: The generate_metadata function checks the settings file to get the Vendor code for this installation of edoc wizard

9: The generate_metadata function passes a metadata file to the ftp_upload function.

10: The ftp_upload function pulls any products that it needs from the products folder

11: The ftp_upload function reads the settings file in order to get the server, username, and password in order to make a connection to Amazon

12 The ftp_upload function sends edocs, covers, internal images, and metadata file to Amazon

13: Amazon sends an email to a mailbox that the software is capable of checking. This email will contain a report of the successful or unsuccessful edoc updates, or else a record of all sales over a certain timeframe

14: The parse_email function will update the Updates table according to whether or not a job was completed successfully, and if not an appropriate error message will be stored and the “Attempts” field will be incremented

15: If a product has been added, then the parse_email function will add the ASIN code to its entry in the Products database. If a product has been deleted, then the parse_email function will remove the ASIN code from its entry in the database. If a product has been downloaded for purchase, then the parse_email function will increment its ‘NumDownloads’ value in the database according to how many times it was purchased.

The parse_email function will also query the Products table in order to find out which account an edoc is registered under, if overrides will need to be paid.

16: If overrides need to be paid, the parse_email function will lookup the GatewayID in the appropriate Accounts record.

17: The parse_email function will create an entry in the “sales” table for each line of the sales report from Amazon

18: The parse_email function will alert the administrators immediately if the email from Amazon indicates that there was a problem with an update event.

19: The parse_email function will update the PmntGateways table by calculating the amount earned by a user (initially calculated based on a $default_percent value in the settings file, but later may be based on the subscription level of a user) and adding it to any amount already due

20: Administrators and users are both able to review a report on edoc sales by month, by edoc, and by account.

21: An administrator will check the PmntGateways table to see how much a user needs to be paid

An administrator will update the PmntGateways table everytime they pay a user

22. The administrator will update the Disbursements table by paying overrides.

23. The generate_reports function will query the disbursements table to see if any users need to be alerted that they should have received a payment.

24: The generate_reports function will query the Sales table to see whether any reports of any new sales need to be sent

25: A user creates one or more PmntGateways which will be used in their Account(s) to determine how they should be paid their overrides

26: The generate_reports function will check the PmntGateways table to see which users need to be paid and how much

27: The generate_reports function will query the Updates table and alert any people who have recently had a change in their catalog

28: A user will set their contact preferences for their account(s) in the Accounts table, along with the payment gateway they want to receive those overrides by

29: The generate_reports function will check the Accounts table to see whether a user wants to be contacted about a particular event

30: The generate_reports function will send out a report to any user who has a reason to receive one

31: The generate_reports function will send email reports to the administrator which will detail all users who need to be paid, all sales made, and all changes to the edoc catalog.

32: The administrator may change system-wide settings by altering the settings file.

